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The classical canonical partition function for a one-dimensional, two-component 
system is examined for the case of nearest-neighbor interactions. The quasi-chemical 
model of solid solutions is found to be a natural consequence of the definition of the 
partition function when one replaces the normal configurational energy with a con- 
figurational free energy. Consequently, the quasi-chemical theory may be viewed as 
a consequence of the definition of the partition function and not as merely a physically 
pleasing model. 
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neighbor interactions ; one dimension ; exact solution ; configurational degeneracy. 

1. I N T R O D U C T I O N  

The theoretical description of phase transformations has proven to be one of the most 
interesting and mathematically difficult aspects of statistical mechanics. As a conse- 
quence of the mathematical difficulty, a great number of physically pleasing models 
have been introduced in the literature. One of the more frequently used models origi- 
nated with Ising m as an attempt to explain ferromagnetism; his model is also often 
used to explain solid-state segregation a n d  order-disorder phenomena. One recent 
example is the work of Dunn and McLelann, c2) who use the term "quasi-chemical 
model" to describe the introduction of a configurational entropy. Excellent reviews la~ 
are available of the progress with the Ising and other models. 

The purpose of this work is to prove that the physical basis for the introduction 
of configurational entropy as used in the quasi-chemical theory is a direct manifesta- 
tion of the definition of the partition function and thus is not merely an attractive model: 
It will be shown that the classical partition function for a two-component, one-dimen- 
sional system with nearest-neighbor interactions contains a contribution to the free 
energy from configurational degeneracy, and consequently, the model is an exact 
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description of physical reality to the degree to which the above approximations are 
valid. 

2. D E S C R I P T I O N  O F  T H E  P R O B L E M  

Consider a system of length L in which NA A-type atoms and N -- NA B-type 
atoms are confined. The potential energy is restricted to nearest-neighbor interactions 
only; however, the exact mathematical form will be left somewhat arbitrary. Obvious- 
ly, the form of the potential will depend upon the elemental species, e.g., the A - A  

bond may differ in form from the A - B  bond, etc. 
The following assumptions are applicable to all interactions, independent of the 

species involved: (1) The atoms have a impenetrable core of diameter a, i.e., 
U,(r i  - -  rj) ~- oo for [ ri -- r~ [ <~ a; a may be considered to be infinitesimal. (2) The 
potentials are otherwise bounded. 

Consequently, the total potential energy of the system must be 

N - - 1  

KTr = Z r,) 
i = 1  

= f ( N A ~ ,  N,  N~) (1) 

where NAB is the number of A B  interactions, and the potential is dependent upon 
concentration, configuration, and interparticle spacing. The canonical ensemble 
partition function is defined as 

Z = ANAAA~ -~r QN,NA/[NA !(N - -  NA)!1 

L L 

A~ = {27rmiKT/h2}  1/~, QN,IqA o o 

(2) 

The hard-core potential of infinitesimal diameter imposes a linear ordering in the 
system. Consequently, the evaluation of Eq. (2) incorporates all possible arrangements 
of the atoms; there are N! of them. If  one associates the variable ri with the position 
of the ith particle in the array and the variable )t with the permutation, Eq. (2) can be 
expressed as 

QN,, A 
{a} O<rl <r2... <rN_1<rN<L 

i /  , /  

where the sum over A extends over all N! permutations of the particles. 
Now one can prove by induction that the entire volume of phase space is incor- 

porated when Eq. (3) is given in the explicit form 

L L L L 

Q . A----yfod i f dr _if (4) 



On the Gluasi-Chemlcal Theory of Solutions 397 

With the isothermal-isobaric (3) partition function in mind, consider the 
transform of any one of the integrals in Eq. (4): 

r ? e -~L dr:t "'" drN e -~(~) dL 
0 ~ 0  ?'N--X 

cx) o~ co c~ 

= f  dr l f  d r z ' " f  d rg f  e-sLe-r dL 
0 ~'1 ~'N--1 r N  

Consider the following set of reduced coordinates: 

r i - -  r i _  1 = x i , i = 2 . . .  N; r I = X 1 

The Jacobian for the transformation is easily shown to be unity, 

t l  if m >~n 
~r~f~x~ = 

if rn < n  
Thus, 

Laplace 

(5) 

e(r  , . . . ,  , . . . ,  x N )  

is the determinant of a lower triangular matrix whose nonzero elements are unity. 
Expansion by minors easily proves the assertion. The use of these coordinates in 
Eq. (5) leads to the following: 

Q,c.  = - fodxlfodx "'fodxNexp- S x +r xN,Z) (6) 

Now, since 

r ..... xN, 2) = (1/KT)Z U(xi, A) 
i 

from the definition of the potential energy, Eq. (6) can be written in the following form: 

FvIN--1 ] 
(7) 

(z} 
oo 

r = f dxi e-~*~e -v"+l/xr (8) 
0 

Upon inserting s = p/KT into Eqs. (7) and (8), one can recognize the fact that 
A(N, P, T ) =  exp[--G(N,p, T)/KT], where A is the isothermal-isobaric partition 
function and G is the Gibbs free energy excluding the A~ and factorial terms, Eq. (2). 

Consider the following modification of Eq. (7): 

N--1 
A(N,p, T) = (plKT) ~r Z I-[ (KT/p) ~ (9) 

{a) i=1 

From Laplace transform theory, 

c o  

(KTIp) ~b~ = ( e -~,dxr dxi - j~'e -~s"+Imr dx (10) 
~ 0  0 
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Equation (10) is the transform of a single particle in a volume xl �9 The particle inter- 
acts with one "wall" of its container with a potential Ui,i+~ �9 From prior discussion, 
the source of this potential is a neighboring particle in a particular configuration. 
Such a Laplace transform as in Eq. (10) has in the past been interpreted as the 
negative exponential of a "chemical potential" divided by K T  (~-5). Such an inter- 
pretation is of interest here. Furthermore, Eq. (9) and (10) may be interpreted as the 
isothermal-isobaric partition function of the system; the sum over all of  the permuta- 
tions carries the interpretation of configurational entropy. 

If one relables 

(KT/p) r = e -~~ 

Eq. (9) takes the form 
/4--1 

A(N,p,  T) = (p/KT) N-a ~, I~ exp[--I~o,(A)/KT] (11) 
{2t} C=1 

With the above interpretations, Eq. (11) carries the configurational entropy of the 
Ising model and an energy of particle interaction given by/z0~(A ). This energy takes 
the place of the usual potential energy as used in the Ising model or quasi-chemical 
model. 

Phase transformations in one-component, one-dimensional systems have been 
discussed elsewhere.(3-8) It is known that a phase transformation of the van der Waals 
type is possible in one dimension. (5) Fluctuations can be discussed on the basis of 
continuity of the equation of state/7) Consequently, with the exception of the two- 
phase region of the van der Waals gas, the system properties are well-behaved. As 
an example, upon setting the potential equal to zero and using Eqs. (2), (10), and (11), 
one can easily attain the free energy of the two-component ideal gas. 

Now, the two- or three-dimensional system presents a different problem alto- 
gether. No two- or three-dimensional system has been studied exactly. The majority 
of the knowledge about phase transformations comes from the cluster expansions c8) or 
the use of models such as Ising's. The two-dimensional Ising model is known to have 
a first-order phase change, a critical point, etc. The evaluation of the partition function 
for two- or three-dimensional systems is usually approximate, involving the exclusion 
of a portion of phase space. 

In a two-component system, such an exclusion leads to the quasi-chemical theory, 
as the density is usually restricted to the range for solids. Since an exact evaluation 
has not been accomplished, the physical validity of the model remains open to question 
except for the one-dimensional system treated here. From this work, the quasi- 
chemical theory is an exact manifestation of the one-dimensional partition function 
when the interactions are restricted to nearest-neighbor interactions and the confi- 
gurational energy is replaced by a configurational free energy. 
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